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Independence in time series:
another look at the BDS test{

By RopNEY C. L. WOLFF
Department of Statistics, University of Glasgow, Glasgow G12 8QW, U.K.

This paper examines a statistical method derived from chaos theory. The cor-
relation integral was proposed over a decade ago as a way of detecting chaos
in a possibly partial realization of a dynamical system, because it depends on
the spatial arrangement of the reconstructed attractor of the system. We exploit
geometrical properties of an embedded time series to establish a test of inde-
pendence in the original time series. Earlier efforts here have used the Central
Limit Theorem to obtain normality as the null distribution; however, the testing
procedure was, to an extent, ad hoc. By making moderately weak assumptions
about the marginal distribution of the given series, we obtain a Poisson law for
the correlation integral under the null hypothesis of independence, and use non-
parametric methods to specify the test precisely. We compare the size and power
of the present test with its predecessor and with other non-parametric tests for
serial dependence.
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1. Introduction

(a) Motivation

In classical time series analysis, in which one uses linear models incorporating
gaussian innovations, questions of independence are often dealt with by examin-
ing correlations. However, if there is departure from normality and linearity, then
independence and lack of correlation need no longer be equivalent. A series with
zero autocorrelation at each lag need not necessarily comprise independent ob-
servations (see, for example, Hall & Wolff 1994b). The existence of independence
in a time series is of much interest in exploratory analyses and modelling, as well
as in model-checking, since one typically fits models incorporating independent
and identically distributed (11D) innovations (noise). Prediction and forecasting
(Kendall & Ord 1990, p. 122) are also a concern in time series analysis. There
exist many methods of forecasting which resort to using fitted parametric models,
non-parametric approaches, and other ad hoc ideas, such as exploiting the ‘mo-
mentum’ of a series. In general, all such approaches are governed by dependence
structures in the series, and precision of a forecast may be better in a correlated
series than in another one of independent observations with identical marginal
properties to those of the former. Hence, there is the need to examine dependence
structures in time series without resorting to statistical correlations or other lin-
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384 R. C. L. Wolff

ear features. The correlation integral provides a useful medium. Moreover, the
use of the correlation integral in assessing independence in a time series is a
fine example of the use of chaos theory in the context of stochastic, non-chaotic
processes.

(b) The correlation integral

We give a brief introduction to the correlation integral. An accompanying paper
in this issue by Dr Cutler, as well as the comprehensive review articles by Berliner
(1992) and Isham (1993), provide more details.

A deterministic dynamical system can be specified in terms of a map, f, oper-
ating on a manifold, M, such that f : M — M. The system may operate either in
discrete time, in which case f is applied iteratively on some initial conditions, or
in continuous time, in which case f specifies a collection of differential equations
which produce a flow beginning at the initial conditions. Suppose that f produces
a discrete time trajectory, namely {zo, f(z0), f*(z0o),...}, where zy € M is the
initial condition and f* denotes the k-fold iterate of f. The trajectory may be
regarded as a time series. The long-run behaviour of a dynamical system, its equi-
librium distribution, is embodied in the attractor. Therefore, an investigation of a
dynamical system, given only a realization of it, often commences with an inves-
tigation of the nature of its attractor, and especially its dimension. The attractor
of a chaotic dynamical system can be Cantor-like, and so may be summarized
using a fractional dimension.

We can define a fractional dimension as follows. Choose a point z,, specified
in d coordinates, from the attractor. If A is the dimension of the attractor, then,
heuristically, the number of points, N(h), of a ‘typical’ trajectory of length n of
the dynamical system within distance h of z, should satisfy N(h) oc h®. This
leads to the definition of the information or correlation dimension,

A= lim lim 28NV

n—ocoh—0t logh

If the limit exists then it need not be an integer. The observed realization of a
dynamical system may be a cross-section of the true realization, for example, a
projection into a lower-dimensional space or the realization of the first-return map
to a lower-dimensional subspace. Takens (1981) proves that such a cross-section
of a generic dynamical system with attractor of dimension A can be embedded in
a euclidean space of dimension at most 2A + 1. Grassberger & Procaccia (1983)
provide an algorithm to obtain the embedding dimension, given a time series
Yy,...,Y,. They use the correlation integral,

NS v vi<, (L.1)

i=1 j=i+1

n—p+
C(n,p,h) = ( 5
where the vectors

Vi=(Yi,...,Yiip1) (i=1,....,n—p+1) (1.2)

constitute the embedding of the time series into p-dimensional euclidean space,
and where I(A) denotes the indicator function of event A. Assuming that the
underlying series is completely random, in the sense of having no deterministic
structure, then the number of pairs of points which are within distance h of each

Phil. Trans. R. Soc. Lond. A (1994)
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Independence in time series 385

other should be proportional to the volume containing such points, h?. Complete
spatial randomness in spatial point patterns is an example of this (Diggle 1983).
If the series is deterministic or chaotic, then vectors of length py or more, for some
Do, will contain functionally dependent entries, and so the power law will saturate
at hP° when p > po. Suitable log—log plots can be used to check for saturation in
the power law. Smith (1988) discusses limitations in this regard.

(c) A test for independence (Brock et al. 1986)

Brock et al. (1986) apply the Central Limit Theorem to the correlation integral
and deduce its asymptotic distribution. Their definition of the correlation integral
uses the L* norm in equation (1.1) for comparing distances, h, between points of
the embedded series. We conjecture that the choice of norm will not substantially
affect the procedure, as h — 0%, if the underlying series is independent. Brock et
al. prove that, under the null hypothesis that Y3,...,Y, constitute a series of 11D
observations, C(n,p, h) converges to {pr(|Y; — Y;| < h)}" as n — oo, with prob-
ability 1. Further, they show that ayC(n,p1, h) + a;C(n,ps, h), suitably scaled,
has an asymptotic normal distribution, the variance of which is given explicitly in
terms of pr(|Y; —Y;| < k) and pr(|Y; = Y;| < h & |Y; — Yi| < h) (4,4, k distinct).
There is a numerical study, which we shall discuss more fully along with our
results, in which they observe that the actual type I error exceeds the nominal
significance when p > 3. Type II error is calculated for three specific parametric
alternative hypotheses.

Brock et al. do not place any conditions on the order of magnitude of the
comparison distance, h. If A becomes large then the correlation integral equals
unity with probability 1: it is obvious that this can occur for finite h. For fixed
n, as h — 07 there will be fewer and fewer points of the embedded series deemed
sufficiently close and therefore C(n,p,h) — 0. We suspect that their simulated
type I error would converge to the nominal significance level if h were chosen in
accordance with their rate of convergence in distribution to the normal of the
test statistic.

(d) Some other tests for independence in a time series

Skaug & Tjgstheim (1993a) consider estimating the dependence measure pro-
posed by Hoeffding (1948) for the case of two random variables, which consists of
calculating the squared error between the bivariate cumulative distribution func-
tion (CDF) and the product of the marginals. Skaug & Tjgstheim consider the
time series case by estimating Hoeffding’s measure via the empirical bivariate CDF
The bivariate CDF for a time series is defined to be that of observations at succes-
sive epochs. In particular, they obtain the empirical marginal CDFs directly from
the bivariate empirical CDF, and they note the relationship of their test statistic
with the Cramér—von Mises functional for test of fit. Skaug & Tjgstheim (1993b)
similarly construct a test using kernel estimates of the bivariate and marginal
densities.

Some classical tests for independence are based on the distributions of par-
tial autocorrelations, as described in Hannan (1970, ch. 3). The Durbin-Watson
statistic (Durbin & Watson 1950, 1951, 1971) enjoys popularity in testing for
serial correlation.

Phil. Trans. R. Soc. Lond. A (1994)
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(e) Qutline of paper

The paper is organized as follows. In § 2 @ we outline the Chen—Stein method for
proving Poisson convergence of a sum of correlated binary random variables. In
§2b, we apply this to the (unscaled) correlation integral, as in (1.1), and, in par-
ticular, show that convergence relies only on a technical condition on the marginal
distribution of the observed time series. The proof further yields a relationship
which governs the magnitude of the comparison distance, namely h o< n~ /7| in
the notation of (1.1). In §3a, we obtain the mean of the test statistic under the
null hypothesis of independence in terms of integrals of second, third and fourth
powers of the marginal density of the given time series. Power considerations are
discussed in §3b. A numerical study in §4 illustrates some size and power fea-
tures of the present test, and makes contrasts with related non-parametric tests
for independence. Some persisting difficulties are summarized in §5.

2. Poisson convergence

(a) The Chen—Stein method

Chen (1975), using methods established by Stein (1972), proved that con-
vergence to a Poisson distribution, for the number of occurrences of dependent
events, can often be deduced by computing no more than the first and second
moments. Arratia et al. (1989, 1990) review this so-called Chen-Stein method
and discuss extensions to the multivariate case and to approximations by Poisson
processes, along with applications (see also Barbour et al. 1992). We shall use
the following result.

Let Z be an index set and let X (k € Z) be Bernoulli random variables with
0<p. =pr(Xy=1)=FE(X;) < 1. Let

D=Y"Xi,, A=ED)=)> p,

keT keI
such that 0 < A\ < co. For each k € 7, define
I, = I\{¢; X, is independent of X},

which Arratia et al. call a neighbourhood of dependence. Put

bi=> Y mpe ba=> > pu

kET LeTy, kET teTp\{k}

b= 3 BIE{X: —p | o(Xe s £ € T\TWY,

kel

where py, = E(X; X,) and o denotes the sigma field generator. All of b;, b, and
bs; are non-negative. Let P have a Poisson distribution such that E(P) = E(D),
and let

TVD(P, D) = 2sup |pr(P € A) —pr(D € A)]
ACZ

denote the total variation distance between the distributions of P and D. Arratia
et al. (1989) ShOW that TVD(P,D) < 2(b1 + bQ + b;;).

Phil. Trans. R. Soc. Lond. A (1994)
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(b) Proof of Poisson convergence of the correlation integral

Berman & Eagleson (1983) obtain Poisson limit results for a family of incom-
plete symmetric statistics, of which the correlation integral is a member. We
sketch the proof here, as some details will provide insight for construction of the
test statistic.

Let the time series Yi,...,Y, be IID with a bounded, continuous probability
density function (PDF) g. With n’ = n — p + 1, define an embedding of the
original time series in a phase space of dimension p, as in (1.2). The binary-
valued variables X;; = I{V; — V; € B,(0,h)} (1 < i< j < n') will play the roles
of the Bernoulli variables in the Chen—Stein theorems. Note that ,(0, h) denotes
the ball of radius A in p-dimensional euclidean space. Define the correlation count
to be

’

n—-1 n n' —1p—1 n'—1n'—i
D(n,p,h) =30 D0 Xig=3 D Xiwwj+ 3 3 Xy
=1 j=itl i=1 j=1 i=1 j=p

Clearly, it is n/(n' —1)/2 times the value of the correlation integral, given in (1.1).

Let S; = {Xiiy;},, be a sequence of M, ;-dependent random variables, such
that M,; = (p — 7)I(1 < j < p— 1), and where the sequence {U;} of random
variables is said to be M-dependent if U; is independent of o(U; ar41, Uirarsa, - - -)
(1=1,2,...). When M = 0, M-dependence corresponds to independence.

For i < 7,

E(Xy;) = pr(Xy; = 1) = pr{Vi = V; € B,(0,h)} ~ hPupg;5(0)  (2.1)

as h — 0%, where v, is the volume of B,(0,1) and g,; is the PDF of V; — V;. Hence
the expected contribution to the value of D(n,p, h) by the sequences, S;, of M, ;-
dependent random variables (j = 1,...,p — 1) is of order of magnitude nh? as
n — oo and h — 0%. Also, the expected contribution to the value of D(n,p, h) by
the sequences, S;, of independent random variables (j = p,...,n’ —1) is of order
of magnitude n2h? under the same limits.

Recall that a Binomial random variable with index N and parameter 7 con-
verges in distribution to a Poisson random variable with parameter A as N — oo
provided only that Nm — X as well. Along the same lines as this, the preceding
paragraph suggests that, provided n?h? tends to a constant, say L, as n — oo
and h — 0%, D(n,p, k) will be asymptotically bounded in expectation, and Pois-
son convergence may be possible. Indicate this multiple limit with the notation
(n, h,n*h?) — (c0,0", L). Specifically, if 0 < sup E {D(n,p, h)} < 8 < oo, where
the supremum is taken over n, then pr{D(n,p,h) > d} < E{D(n,p,h)}/d <
B/d, by Markov’s inequality, as D(n,p, h) > 0 with probability 1. Hence the prob-
ability mass of D(n, p, h) is concentrated towards the origin, and this is consistent
with D(n,p, h) attaining a Poisson distribution in the limit. Modifying the nota-
tion of Arratia et al. (1989) in the obvious way, let T = {(¢,7);1 < i < j < n'},
Z;; = {(k,£) ; X,; is dependent upon Xy,}, and so (i,7) € Z;;. Since X;; is de-
pendent on X, exactly when i —p+1 < k<L i+p—lorj—p+1<LLj+p—1,
#(Z;;) < (2p— 1)? and # (Z) =n/(n' — 1)/2. Thus

2 '
b < # (2 # () {70, max 050} < (3 ) (20— 12702 max {05(0))"

Since g is bounded so too is g;;, and so b; — 0 as (n, h,n?h?) — (c0,0%, L).

Phil. Trans. R. Soc. Lond. A (1994)
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Now consider b,. Choose (i,j) € Z and (k,£) € Z;;. Since i < j and k < ¢
there is an index s € Sy = {i,...,i + p—1}U{j,...,5 + p — 1} such that
s¢Sy={k,....,k+p—-1}U{{,... . L+p—1}. Let X = {X;; t € S;USI\{X,}.
Then

E(Xij X)) =pr{V; = V; € B,(0,h) & Vi — V, € B,(0,h)}

=pr{Vi = Vo € B,(0,h) | Vi = V; € B,(0,h) }pr{Vi — V; € B,(0, h)}
< pr{Vi — Vi € B,(0, ) | X}pr{Vi —V; € B,(0,h)}

= pr(|Xs — zo| < h | X)pr{Vi - V; € B,(0,h)}

- {/_’; gx(z — z0) dm}pr{Vi —V; € B,(0,h)}

~ 2 {sup gx(u)} BP1,9:5(0),

as h — 0T, where gx is the PDF of X,. Thus b, is dominated by a quantity of
order n?2h {sup, gx (u)} A*v,g;;(0) — 0 as (n, h,n*h?) — (00,0", L).

By construction of Z;;, b5 = 0.

Hence we have that D(n,p, h) has a limiting Poisson distribution as described.
In practice, the choice of the comparison distance, h, will be governed by the
relationship h o< n=2/7,

3. Testing procedure

(a) Calculation of the mean in the Poisson law
Under the prescribed rate of convergence, the asymptotic mean of the correla-
tion count is -;-vayo, where g, denotes the average of the densities of each V; —V;
(1 <)
Since v, = 7?/2/T {1(p+2)} (Courant 1937, p. 304), it remains to evaluate
the density of V; — V; at zero, which is a function of the PDF of Y; — Y;. Let g*
be the PDF of Y; — Y,. Then

9" (u) = /Rg(?h + u2)g(uz) dus, g*(0) = /R{g(u)}2 du.

Observe that V; and V; (i < j) are stochastically independent whenever j —i > p.
Suppose this to be the case. Then, for infinitesimals dwy, . ..,dw,_;, the PDF, g;; 1,
of V; — V;, evaluated at zero, is given by

9i5,1(0)dwg - - - dwp_y = pr(0 < Yipp — Vi <dwg, 0K k<p—1)
p—1

= H pr(0 < Yiyr — Yigr < dwpsr),

since the entries of V; — V; are mutually independent, which yields

9520 = 1O = [ [ o)y ] (3.1)

Consider the case [3(p+ 1)] < j — i < p, where |z] denotes the largest
integer not exceeding z. Let y,J = {Yk, Y, is an entry in both V; and V;,1 < k <
n}. Under the condition j — ¢ = m, say, no two elements of Y;; w111 occupy a

Phil. Trans. R. Soc. Lond. A (1994)
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corresponding entry of both V; and Vj. In particular, precisely the first p—m
entries of V; and the last p —m entries of V; are contained in ;. It is important
to note this in what follows, as we shall condition on Y;;. It is easily checked
that 2(p — m) < p. Now, let V; — V; have PDF gi2. Then, for infinitesimals
dwo,...,dwp—1,

i5.2(0)dwg « - - dwp_y = pr(0 < Yipp — Ve < dwp, 0k <p-1)
=f-~/pr(o<n+k-y;-+k<dwk, 0<k<p-1

p—1
lyr < Yr <y, +dyr, Yr € Vi) X {H 9(Yive) dywz} )
{=m
since pr(y, < Y, < yr + dy,) = g(y-) dy, for infinitesimal dyr, and where inte-
gration is over Yiim € Ry...,Yitp-1 € R. So, as dwy — 0 (k=0,...,p—1), by
continuity of g, , ‘

9552(0) = {g" ()" / s [ {Eﬂ%%)ﬂ%u)} {EQ(%M) dyz'+e} (3.2)
— oy [ [ swya]
~[[wwra]” [ owra] 3

We make two remarks. First, the product of squares of g(yx) in equation (3.2)
arises from the first (i +p — 1) — (i + m) + 1 = p — m entries of V; — V;, and the
last p — m of same, since, in those entries, we condition on exactly one term of
the difference Yiyx — Yj1+x. The remaining factors in equation (3.2) contribute to
the integral of cubes of g in (3.3). Secondly, when m = p we obtain the result of
the first case, namely when j — ¢ 2 p.

Finally, let 1 < j —i < |3(p+1)] (p > 1), and define }j; as in the case -
l3(p+1)] < j—i < p. Then the number of entries in V; — V; which comprise
a difference of two elements of Y;; is 2(p — m) — p = p — 2m, since precisely the
first p — m entries of V; and the last p — m entries of V; are elements of J;;, and
V; — V; is of length p. So the PDF of V; — V; at zero is given by

i5,3(0) dwg - -+ dwp—1 = pr(0 < Yiyp — Yjp < dwg, 0SkESp— 1)
=[~--/pr(0<mk—Y,-+k<dwk, 0<k<p—1

. . p~1
lyr <Y, < yr +dyr, Y2 € Vij) X {H 9(Yire) dyi+e}

L=m
:/.../pr(0<}’i+k——~yj+k<dwk, 0<k£m—1&
0<yire—Yipe Sdw,, p—-m<ESp—-1&
0<yi+r"yj+r<d’wra m<r<p-m-—1)

, X {pI—-I g(yi+s) dyi+s} ’

$=m

Phil. Trans. R. Soc. Lond. A (1994)
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where integration is over y;1m € R, ..., Yitp-1 € R. As
dwy, - 0(k=0,....m—-1,p—m,...,p—1),

it can be shown that

gij,S(O) dwy, -+ - dwp_m—1 =// ﬁ {g(yi+k)}2 dyi-i—k:l { I_I g(yi+£)}

=p—m

p—1 p—m—1
X { 9(Yirs) dym} { H I(0 < Yigr = Yirmir S dwr)} . (34)
s=2m r=m

This leads to two subcases.

The first subcase is when 2m—1 < p—m, or p 2 3m. This is possible, for exam-
ple if p = 4 and m = 1. The presence of the indicator functions in (3.4) restricts
the integration subject t0 Yitom = Yivms--+» Yitp-m = Yirp-2ms-- ) Yitp-1 =
Yitp—1-m, a total of 2p — m constraints, as dwy, — 0 (k = m,...,p — m — 1).
It may be shown that

p—3m

9i;3(0) = [ /R {g(y)}sdyr—gm [ /R {g(y)}“dyrm_p [ /R {g(y)}zdy] . (35)

The second subcase is when p < 3m. This is possible, for example if p = 5
and m = 2. The calculations become quite complicated in this case, although it
appears that we recover an expression very similar to that in equation (3.5).

Observe that the number of cases where j — ¢ < p is o(1) asymptotically.

It is preferable either to calculate or to estimate the integrals of various powers
of g directly, as in Hall & Marron (1987). However, theory in that and related
papers deals only with integrals of squares of density derivatives. Motivated by
this particular application, Hall & Wolff (1994a) have developed consistent es-
timators of integrals of all powers of density derivatives, and we shall use their
calculations in the sequel.

(b) A sequence of statistical hypotheses

The result of §2b, namely that, under the stated conditions, the correlation
count is asymptotically distributed according to a Poisson distribution, enables
us to construct a test of the hypothesis

Hy: Y,...,Y, are 1ID

against an alternative hypothesis specified by some nonlinear model for the series
Yi,...,Y,, as in Brock et al. (1986).

As discussed in Cox & Hinkley (1974, §4.8), the general unavailability of uni-
formly most powerful tests leads to the consideration of local alternatives: loosely,
small departures from the null hypothesis.

For power considerations in the present problem, we may consider a particular
family of local alternatives, defined by

q
Hy: Y=Y Ziy (i=1,...,n),

=0

where Z3,..., 2,4 are IID. Moreover, H, indeed specifies Hy when ¢ = 0.
If we assume that Z; possesses a bounded, absolutely continuous PDF, it is not

Phil. Trans. R. Soc. Lond. A (1994)
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difficult to show that D(n,p,h) will converge in law to a Poisson distribution as
n — oo and A — 07T provided that, simultaneously, n?h? converges to a constant.
Just as under H,, we need only determine the density of V; — V;, evaluated at
zero, to specify the limiting distribution. In principle this can be done in the
same fashion as in §3 a, but the expression will be cumbersome and tedious to
evaluate. We describe a special case below, and study some more cases in §4.

Suppose that Zi,...,Z,m ~ N(0,72) and are, of course, independent. Let
g > 1. Under H,, Y; ~ N(0,¢q7?) and cov(Y;,Y;) = (j — )72 I(1 < m < q), where
m = j —1i, as before. Thus V; - V; = A(Z;, ..., Z;1p—1+4)" where A is a matrix of
order p x (m + p + ¢) with the row arrangement

1,...,1,0,...,0,1,...,1
N N N———r
a b a

beginning in the (k, k) position (k = 1,...,p), and 0’s everywhere else. Here,
a=qand b=m—qif m > q, whilea=q—m and b=m if 1 < m < ¢q. Conse-
quently, V; — V; has a multivariate normal distribution with mean 0 and variance
matrix 724A’, and the value of its density at zero is {(2772)? det (AA’ )}_1/ 2,
With regard to hypothesis testing, this information now enables us to specify the
distribution of the test statistic under any of the local alternative hypotheses,
assuming normality of the components of the moving average representation of
Y;.
4. Numerical study

In all of the simulations, parameters were chosen or estimated subject to the
mean of the test statistic being unity. Of course, this implies that the test statistic
has a larger coeflicient of variation than another with a larger mean. In the
following results, this may be the cause of large variability, which is occasionally
non-systematic. For example, convergence to unity of the power of the test against
particular alternatives, illustrated below, can be better achieved with a larger
mean for the test statistic.

Our test statistic is a discrete random variable, and a test with exact sig-
nificance of 5% is not available. In all of the simulations, we used appropriate
randomized rejection. That is, if ¢ is such that 0 < pr(D > ¢) = 8 < 0.05 and
0<pr(D=c)=86 (6486 > 0.05), then reject the null hypothesis of indepen-
dence if D > ¢, and reject the null hypothesis with probability (0.05 — 8)/68’ if
D = ¢; if D < c then retain the null hypothesis in preference to the alternative.

Table 1 shows the probability of a Type I error when the given time series
comprises IID uniform random variables on the interval [0,1]. The mean of the
null Poisson distribution was calculated exactly, using the correct functional form
of the respective densities. The sizes of the various simulated tests are roughly
in accordance with the specified theoretical significance level of 5%. However,
over the range of phase dimensions we considered, for each series length, the size
increased slightly over the range p = 2,...,5 or so, and then fell, a curious result.
This is discussed in § 5b.

Table 2 shows the probability of a Type I error when the given independent
time series comprises (i) IID uniform random variables on the interval [0,1], and
(ii) 1D standard normal random variables. Randomized rejection was used, and
the parameters of the respective test statistics were estimated non-parametrically.
While larger sample sizes improve accuracy, the size of the test increases faster

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

a
/ \
A \

Y \

P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Table 1. Probability of a Type I error (I1ID uniform data): ezact calculations

(The table is headed by the dimension of the phase space. The remaining rows show the simu-
lated probability of rejecting the null hypothesis that the given data are an IID time series, for
independent time series of lengths 100, 250 and 1000. The parameter of the null Poisson distri-
bution was evaluated according to equations (3.1), (3.3) and (3.5). There were 500 independent
replications for each sample size.)

p 2 3 4 5 6 7 8

n = 100 0.044 0.042 0.042 0.046 0.056 0.040 0.028
n = 250 0.044 0.046 0.056 0.054 0.052 0.046 0.042
n = 1000 0.046 0.060 0.062 0.058 0.054 0.042 0.032

Table 2. Probability of a Type I error (IID uniform and normal data): non-parametric
approximations

(The table is headed by the dimension of the phase space. The remaining rows show the simu-
lated probability of rejecting the null hypothesis that the given data are an IID time series, for
independent time series of lengths 100, 250 and 1000. The parameters of the null Poisson dis-
tribution were evaluated according to the non-parametric method described in the text. There
were 1000 independent replications for each sample size.)

P 2 3 4 5 6 7 8

uniform n = 100 0.059 0.087 0.126 0.142 0.152 0.167 0.182
n = 250 0.064 0.080 0.101 0.138 0.129 0.157 0.179
n = 1000 0.053 0.082 0.096 0.119 0.112 0.136 0.164

normal n =100 0.056 0.075 0.093 0.117 0.133 0.146 0.209
n = 250 0.066 0.076 0.089 0.102 0.113 0.143 0.172
n =1000 0.051 0.056 0.059 0.072 0.086 0.106 0.120

with phase dimension than it does in the case of non-randomized rejection, the
results of which are omitted here for brevity. The results are especially pleasing
in the normal case, from which one may conjecture that the test performs well
on long-tailed data.

Figure 1 illustrates the power of the test for two particular alternatives, plotted
against the parameter, a, where the models governing the alternative hypothesis
are a bilinear (BL) process given by X; = (a + fe-1) X1 + €& (o + 52 < 1)
(here, 8 = 0.4), and a nonlinear moving average (NLMA) process given by X; =
€:—1(a+€;). These are two models considered in Skaug & Tjgstheim (1993a) and
a related preprint. The embedding dimension is 2. The curve labelled I, refers to
the present test; the curves labelled I; and I, correspond to Skaug & Tjgstheim’s
kernel-based statistic; the curve labelled I3 corresponds to their statistic based on
the empirical distribution function; and I, corresponds to a correlation measure,
similar to the classical Durbin—Watson statistic, as in Durbin & Watson (1950,
1951, 1971). Broadly speaking, it would appear from these and other simulations
that the present test compares well with other methods, except possibly in the
case of some linear models where dependence is fairly weak. While its power
improves as the embedding dimension increases, the size also increases, a feature
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Figure 1. Graphs of power against the parameter, a, of the process governing the alternative
hypothesis, namely (a) a bilinear process and (b) a nonlinear moving average process, as spec-
ified in §4. The power curve, Iy, relates to the present test; curves Ii,...,I4 relate to the
non-parametric tests considered by Skaug & Tjgstheim (1993a), as mentioned in the text, and
have been transcribed from their paper and a related preprint.

observed by Brock et al. (1986). Our simulations improved on the reported values
of size and power from their numerical study.

5. Remarks

(a) Present results

We have shown that the unnormalized correlation integral may have a Poisson
distribution in the presence of an arbitrary time series, and we have indicated
how the comparison distance should be chosen to enable this. , ‘

Our distributional results improve on those of Brock et al. (1986) in two ways.
First, we specify a suitable comparison distance for the correlation integral. Sec-
ondly, we improve slightly on simulated sizes of some tests.

One appealing property of our method is that it does not involve much more
numerical computation than in the method of Skaug & Tjgstheim (1993a). Fur-
thermore, the nature of the test statistic proposed by Skaug & Tjgstheim is
comparable with D(n,2, h): they examine the two-dimensional embedding of the
given independent time series, particularly the departure of its bivariate density
from the product of the two marginals. They also perform a numerical study of
higher dimensional generalizations of their statistic. However, it is not clear that
comparing a k-variate density with the product of its k marginals (k > 2) must
necessarily account for all possible structures of serial dependence up to lag k.
The correlation integral has the potential to do this, by computing clustering
properties of k-dimensional vectors; of course, the curse of dimensionality is a
substantial hindrance in this regard.

(b) Further considerations

The non-monotonicity of the simulated significance levels, as the embedding
dimension increased, was perhaps due-to large variability in the correlation count,
another phenomenon which should be investigated further. It is believed that
there would be further improvements if the mean of our test statistic were to be
chosen optimally, in the sense of minimizing the coefficient of variation of the test
statistic or seeking a variance-bias trade-off.

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

a

THE ROYAL A

o \

i A

A
A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

394 R. C. L. Wolff

To compensate for the increase in the size of the test as the embedding dimen-
sion increases, it would be helpful to quantify the effect of the exponential growth
of the phase space ‘emptiness’ on variation in the correlation count, with a view
to introducing a correction factor to the comparison distance. Silverman (1986,
ch. 4) discusses related issues in the context of multivariate density estimation.

An unresolved issue is the choice of embedding dimension for our test. Using
the geometric analogue of Skaug & Tjgstheim’s (1993a, b) methods, we need only
consider two dimensions, for which the asymptotic distribution theory appears
to apply in the finite sample case. On one hand, using only a two-dimensional
embedding would appear to neglect autocorrelations at lags three or more; sim-
ilarly for other embeddings. Nevertheless, it is the total geometric structure of
the embedding of which the correlation integral is a measure. Given that there
is no saturation in the power law for the correlation integral, higher-dimensional
embeddings of independent data should contain neither any more nor any less
structure than in two dimensions. However, it is not clear how to assess which
aspects of dependence, other than possibly autocorrelations, are overlooked by
an embedding dimension which is too small.

It is a pleasure to record my gratitude to Sir David Cox for supervision of this research, which
comprises part of a recently completed doctoral thesis. This work was supported by an Australian
Research Council grant to the Centre for Mathematics and its Applications, Australian National
University, a computing equipment grant from the Wingate Foundation, London, and a travel
grant from the Nuffield Foundation, London.
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Discussion

P. M. ROBINSON (London School of Economics, U.K.). First, in respect of Profes-
sor Subba Rao’s reference to alternative methods based on higher-order spectra,
let me note that these require moment conditions not required by estimates of
the correlation integral which involve bounded functions. However, the methods
based on higher-order spectra (to which Professor Subba Rao has made outstand-
ing contributions) have a complementary role to play, in particular the spectral
approach allows us to look at departures from independence at all lags, not just
finitely many.

A difference between the central limit theory of Brock et al. and that of Dr
Wolff is that they keep the bandwidth h fixed as sample size increases. As in most
of the other recent work on testing for independence involving density estimates,
he lets h — 0. A difficulty with some of the recent methods (including one which
I proposed and analysed) is that unless techniques such as sample splitting or
trimming are introduced, there is a problem of degeneracy in the null limiting
distribution. An advantage of the h — 0 theory is that it can enable a relatively
neat, and h-free, description of the consistent directions of the tests. Has Dr Wolff
investigated conditions for consistency of his tests?

R. WOLFF. I agree with Professor Robinson’s response to Professor Subba Rao’s
comment. It would be interesting to determine if features of dependence which
spectral analyses can detect have an equivalent revelation via the correlation
integral, if at all, and, in respect of moment conditions, if the correlation integral’s
performance is superior.

Over the issue of consistency, I have not investigated this property. It may be
that the so-called curse of dimensionality might confound it. Although that is
purely a conjectural remark, it should be given due attention in the analysis.
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